Saturday, January 25, 2020

Calculation of Body Surface Area (BSA) for Blood Volume

Calculation of Body Surface Area (BSA) for Blood Volume CHAPTER 25 Calculation of Body Surface Area, Circulating Blood Volume,  Requirement of Blood Products Namita Mishra, Sudha Rawat, Vishva Nath Sharma BODY SURFACE AREA (BSA) Body surface area (BSA) is the area of the external surface of the body, expressed in square meters (m2). In physiology and medicine, the body surface area is the measured or calculated surface of human body. It is used to calculate metabolic, electrolyte, nutritional requirements, drug dosage, and expected pulmonary function measurements. BSA is a measurement used in many medical tasks. For many clinical purposes BSA is a better indicator of metabolic mass than body weight because it is less affected by abnormal adipose mass. Nevertheless, there have been several important critiques of the use of BSA in determining the dosage of medications with a narrow  therapeutic index  like many chemotherapy medications. USES OF THE BSA To gain an appreciation of the true required glomerular filtration rate (GFR) renal clearance is usually divided by the BSA. To calculate a better approximation of the required cardiac output as for example in children, cardiac index is used. Cardiac output = Cardiac Index / BSA Chemotherapy is often dosed according to the patient’s BSA. Glucocorticoid dosing is also expressed in terms of BSA for calculating maintenance doses or to compare high dose use with maintenance requirement. CALCULATION OF BSA It is difficult to actually measure the surface area of the human body so various calculations have been published to arrive at the BSA without direct measurement. The most widely used is the Du Bois formula: BSA = 0.007184 X W0.425 X H0.725 A commonly used and simple one is the Mosteller formula: 0R BSA = ( [ H X W]/ 3600)1/2 Where H = Height W = weight for example : Patient’s weight = 65 Kg Patient’s height = 165 cm BSA = ([65 X 165])/3600)1/2 BSA= 1.72 m2 Recently, a weight-based formula was validated in the pediatric age group that does not include a square root, making it easier to use. It is [4Wkg+7]/[90+Wkg]. AVERAGE VALUES Average BSA for various weights: WEIGHT (Kg) BSA (m2) 1.5 4 0.13 – 0.26 4.1 – 9 0.26 – 0.48 9.1 – 14 0.48 – 0.56 14.1 – 20 0.56 – 0.71 20.1 – 26 0.71 – 0.84 26.1 34 0.84 – 1.0 34.1 – 50 1.0 – 1.4 50.1 66 1.4 – 1.63 Over 66.1 Over 1.63 EFFECTIVE CIRCULATING VOLUME Blood volume is the volume of blood (both red blood cells and plasma) in the circulatory system of any individual. A typical adult has a blood volume of approximately between 4.7 and 5 liters, with females generally having less blood volume than males. Blood volume (BV) can be calculated given the hematocrit (HCT; the fraction of blood that is red blood cells) and plasma volume (PV): BV = PV/ (1-HCT) Diagnostic technologies are commercially available to measure human blood volume. A recent radio nucleotide study called BVA (Blood Volume Analysis)-100, provides a measure of Red Blood Cells and Plasma with 98% accuracy. BLOOD VOLUME ESTIMATION WEIGHT (kg) BLOOD VOLUME ( ml/kg) New born to 10 85 11 to 20 80 21 to 30 75 31 to 40 70 Above 40 65 CIRCULATING VOLUME OF THE CPB CIRCUIT PRIMING VOLUME: the minimum amount of fluid (hemic or non hemic fluid) used to de- air the complete cardiopulmonary bypass (CPB) circuit is called priming volume or the circulating volume of CPB circuit. Priming of the CPB circuit is an important task for the perfusionist. Generally the main objectives of priming are: To deair the CPB circuit To check for any leaks in the circuit To check for any mistake in the assembling of the circuit To meet the need for the extra volume required to prime the CPB circuit as the patient’s blood volume is not sufficient enough to prime the CPB circuit. For achieving sufficient hemodilution. It is a standard practice to use a non blood CPB prime because of the benefits of hemodilution and concerns about blood borne diseases. The total priming volume is determined by the hardware selected for the circuit to be employed. Following are the tables showing the volume required to de-air various oxygenators, arterial filters and tubing. CPB CIRCUIT AND TOTAL PRIMING VOLUME WITH VARIOUS WEIGHT GROUP Weight Group (Kg) Boot Size (inches) Venous line Size (inches) Arterial line Size (inches) Total Priming Volume (ml) 0-4 1/4 1/4 1/4 450 4.1-8 3/8 1/4 1/4 600 8-12 3/8 3/8 1/4 800 12.1-25 3/8 3/8 3/8 1100 >25 1/2 1/2 3/8 1800 TUBING SIZE WITH VOLUME (ml/feet) SIZE (inch) VOLUME (ml/feet) 3/32† 1.8 1/8† 2.5 3/16† 5 1/4† 9.65 3/8† 21.7 1/2† 38.6 SPECIFIC CONSIDERATIONS: In cases where patient is deeply cyanotic the size of the oxygenator and tubing size is selected keeping in mind the requirement of higher degree of hemodilution and higher requirement of arterial blood flows because of the presence of large (or major) aorto-pulmonary collaterals (MAPCA’s). MAPCAs arise from the aorta or its large branches and supply blood to the pulmonary arteries, because of blockade of the main pulmonary arteries. These MAPCAs ‘steal’ part of the cardiac output of the aorta and this results in reduced systemic perfusion and thus increased pump flows are required during CPB in cyanosed patients with MAPCAs to compensate for this ‘stolen’ cardiac output. CACULATION OF BLOOD AND BLOOD PRODUCT REQUIREMENT The hematocrit (HCT), also known as packed cell volume (PCV) or erythrocyte volume fraction (EVF) is the volume percentage (%) of red blood cells in blood. It is normally about 45% for men and 40% for women. It is considered an integral part of a person’s complete blood count along with hemoglobin concentration, white blood cell count, and platelet count. Haemoglobin concentration is reduced as a normal consequence of CPB with hemodilution. Thus the hematocrit that will result from the hemodilution caused due to priming volume of the CPB circuit should be determined. Several calculations are required to assess hemodilution and blood product requirements. To determine the effects of hemodilution, the volume concentration formula is used. C1 X Pt BV = C2 X TVon CPB Where Pt BV = patient’s blood volume ( patient’s body weight X blood volume factor) TVon CPB = total volume on CPB (total priming volume + patient’s total blood volume) C1 = Pre bypass hematocrit of the patient (%) C2 = calculated hemodilutional hematocrit (%) A decision must be made initially regarding the desired hematocrit during cardiopulmonary bypass. Based on the results of the randomized clinical study from Children’s Hospital, Boston ,it seems reasonable to consider a hematocrit of 25% to be the minimal acceptable hematocrit for any cardiopulmonary bypass condition. When the desired hematocrit has been selected the amount of bank blood that must be added to the prime should be calculated. Prime RBC vol = {[C3]x[Pt BV + PV]} {Pt RBC vol} Where Prime RBC vol = volume of blood required in prime C3 = desired HCT on bypass Pt BV = patient’s blood volume ( patients body weight X blood volume factor) PV = total priming volume of the CPB circuit to be used Pt RBC vol = patient’s blood volume X patient’s pre bypass hematocrit For example: Patient’s weight = 5 Kg Pre bypass hematocrit (C1) = 40% Patients blood volume (Pt BV) = 5 X 85 = 425 ml (85 is blood volume factor for 5 Kg) PV (total priming volume of the CPB circuit to be used) = 600ml TVOn CPB = (600 + 425) = 1025ml Calculated hemodilutional HCT (%) (C2) = C1 X Pt BV / TVon CPB = 40 X 425 / 1025 = 16.5 % 16.5 is the hematocrit on bypass. If there is a certain desired hematocrit, then to achieve that hematocrit, the amount packed RBCs if needed for the same patient can be calculated as follows: C3 (desired HCT) = 30 % Pt BV = 425 ml PV = 600 ml TV On CPB = (Pt BV + PV) = (425 + 600) = 1025 ml Pt RBC vol = 425 X 0.40 = 170 Prime RBC vol = {[C3]X [Pt BV + PV]}-{Pt RBC vol} = {[0.30] X [1025]}-{170} = 137.5 Volume of RBCs needed in prime = 137.5 The hematocrit of packed RBCs is 70% thus 137.5/0.70 = 196 ml 196 ml of packed RBCs are needed to achieve a hematocrit of 30%. Thus, 196 ml of the clear prime fluid is removed from the priming volume to account for the added packed RBCs. Therefore the calculation of priming volume now has 196 ml of packed RBCs and 404 ml of prime (crystalloid or colloid). In some cyanotic cases where the patient’s pre bypass hematocrit is more, the blood is diluted to obtain an optimal hematocrit during cardiopulmonary bypass in order to decrease the viscosity of the blood to improve tissue perfusion and to prevent hemolysis. Thus the effect of priming fluid added to dilute the blood can also be calculated as: TVon CPB X C4 = TVon CPB 1 X C5 WHERE TVon CPB = total volume on CPB (total priming volume + patient’s total blood volume) = 1025ml C4 = Hematocrit (of cyanotic patient) on bypass = 0.60 TVon CPB1 = total volume on CPB after adding 500 ml of priming fluid to the CPB circuit. TVon CPB1 = (1025 + 500) = 1525 ml C5 = the new (affected) Hematocrit Thus C5 = (1025 X 0.60) / 1525 = 0.40 40 % is the new hematocrit achieved after adding 500 ml of priming fluid. FIBRINOGEN A critical consideration is plasma fibrinogen dilution. Normal plasma fibrinogen levels are 150-400 mg./dL. The infant/ pediatric patients relative low blood volume with priming requirements of the ECC circuit causes the fibrinogen concentration to be adversely diluted. During CPB, it is desirable to maintain the plasma fibrinogen concentration above 100 mg./dL. in order to prevent impairment of post-CPB hemostasis. Given an example of a 5 Kilogram patient with blood volume of (5 x 85) 425 ml, pre bypass hematocrit of 55%, hematocrit on CPB of 25%, priming volume of 800ml of the circuit to be used for CPB and fibrinogen level of 275 mg/dl. To calculate the effect of priming, patient’s plasma volume is calculated by following formula: BV = PV/ (1-HCT) PV = (1-HCT) X BV Thus PV = (1-0.55) X 425 = 191ml PV = 191ml Patient’s fibrinogen = 191 X 275 mg/100ml = 525 mg Number of milligrams required = (425 + 800 ) X (1.00-0.25) = 9.19 dl If the goal is 100mg/dl, then 919 mg of fibrinogen are needed. Amount of fibrinogen to be added = 919 – 525 = 394mg. 394 mg of fibrinogen must be added to the prime to achieve a goal of 100 mg per dl. FFP usually contains 200 mg of fibrinogen per dl. Thus ml of FPP needed = (394/200) X 100 = 197 ml. Now for the calculation of priming volume the 197ml of the prime fluid (crystalloid or colloid) is replaced by FPP. Thus the clear prime volume becomes 603ml. Suggested reading Jianfeng Wang, Eiji Hihara. A unified formula for calculating body surface area of humans and animal. Eur j Appl Physiol.2004;92:13-17 Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974; 37(2):247-248. Tarazi RC .Pulmonary blood volume. Eur Heart J.1985Oct;6SupplC:43 Tarazi RC . Blood volume.. Eur Heart J.1985;6SupplC:41-42

Friday, January 17, 2020

Holes Essay

Novels are extremely important part in people’s life. They teach us valuable lessons and provide an escape from the real world. Louis Sachar’s novel Holes, allows teenagers to feel for the characters and also allows them to relate to what character is going through. In the novel Holes, there are many characters that teenagers can relate to. One of these characters is Stanley. Stanley is the main character from the novel. When he first arrives at Camp Green Lake Stanley was bullied by the inmates and put in his place. He soon became friends with the inmates from group D. Everyone in group D had a nickname. Stanley had yet to get one but when he was called Caveman for the first time he finally felt that he was accepted into the group. â€Å" you coming caveman? Said squid. Stanley looked around to see that armpit and squid were talking to him†. Another character from the novel that teenagers can relate to is Zero. Zero is a small, shy character who Stanley becomes great friends with in the beginning of the novel. When Zero became friends with Stanley, the reader learnt that Zero is silent because he does not like answering questions because he is cautious of people like Mr. Pendanski, who always mock him. Teenagers can relate to this because they are always wary of what people think about them. Zero was called stupid and dull all the time which makes Zero angry but he can’t do anything about it because he is a lot smaller than the rest of the inmates. â€Å"He is so stupid he doesn’t even know he is stupid†. Zero represents an incompetent teenager that we can all relate to at some point in our life. Louis Sachar uses many themes in the novel Holes. One of these themes is friendship. The benefits of forming solid friendships are clearly shown in the text. Stanley and Zero’s friendship leads to survival and wealth. Once Stanley became Zero’s friend he feels happier than he has ever felt in his life. False friends who are only friendly when they are getting something they want, like X-Ray, are shown to be dangerous. Once X-Ray stops getting benefits out of his friendship with Stanley, he becomes hostile towards him. â€Å" Another very important theme from the novel is Bullying. Bullying is used throughout the novel, which helps teenagers feel and understand what the characters are going through. Bullying is the act upon a person or persons causing harm physically or mentally. This theme adds extra emotion to the novel. The two characters Zero and Stanley are used to generate an authentic and recognisable aspect in the book. Stanley and Zero bond throughout the text and Sachar modifies the language when they are present to relax the reader, so they can interpret the text in their own way this quote clearly describes the beginning of their friendship and allows the reader to warm up to the characters. Conclusion Louis Sachar uses all these techniques to create a fascinating novel that all teenagers can relate to. Sachar uses language techniques appropriately and it enhances the books attractiveness and makes teenagers continue to read the book